1. tPGC; Chicken

Product name: Tissue Primordial Germ Cells; Chicken

Catalog No. CELL-00001

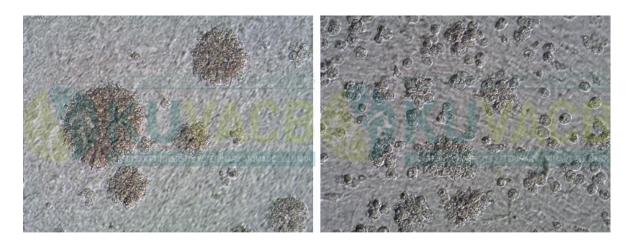
Tissue primordial germ cells are germ cell progenitors isolated from the whole embryo during pre-gonadal stage of primordial germ cells *in vivo*. The cells are characterized by positive expression of germ cell-specific protein markers and *in vivo* gonadal migration assay.

Product category	Animal cells			
Organism	Gallus gallus domesticus, chicken			
Cell type	Primordial germ cells			
Product type	Stem cells			
Morphology	spherical colony			
Tissue	Embryo; Whole			
Product format	Frozen			
Storage conditions	Liquid nitrogen			

General

Applications	Germ cell differentiation, germline genome engineering, assisted		
	reproductive technologies		
Characteristics			
Cells per vial	50,000 –100,000		

Cells per vial	50,000-100,000		
Volume	1.0 mL		
Growth properties	Loosely adherent on feeder cells Embryonic, 2 d		
Age			
Breed	Local breeds		
Sex	Lot-specific, female and male available		
Remarks	The cells are cryopreserved in the first or second passage to		
	ensure high plating efficiency.		


Handling				
Unpacking	Upon arrival, ensure that containers and frozen vials are intact.			
	Retrieve the frozen cells from the packaging and immediately			
	place the cells in liquid nitrogen storage until ready for use.			
Complete medium	MEM α (Gibco Catalog No. 11900-024) containing 1.2 g/L D-			
	glucose, 2.52 g/L EPPS and 1.1 g/L sodium carbonate			
	supplemented with 2-mercaptoethanol (1000X) (Gibco Catalog			
	No. 21985023), Antibiotic-Antimycotic (100X) (Gibco Catalog No.			
	15240062), 5% chicken serum (Sigma Catalog No. C5405) and 5%			
	fetal bovine serum (Cytiva Catalog No. SV30160).			
Temperature	37°C			
Atmosphere	Air			
Feeder cells	Tissue PGC are propagated on feeder cells. Japanese quail feeder			
	cells (Visit the product page of JQ Feeder cells) are tested for			
	propagation of tissue PGC from various avian species. Feeder			
	cells are grown in the same medium as that of tissue PGC. Consult			
	the product detail of the JQ feeder cells for subculture and mitotic			
	inhibition protocols (Visit the product page of JQ Feeder cells).			
Handling procedure	Tissue PGC are propagated on feeder cells, therefore mitotic-			
	inhibited feeder cells are required before inoculating with tissue			
	PGC. Most of the cells are frozen in clumps since this is the			
	general pattern of tissue PGC growth in KAv-1 medium (refer to			
	references). The cells are likely to resume to grow in clumps,			
	although the growth in single cells is frequently observed in some			
	lots.			
	1. Plate mitotic-inhibited JQ cells a feeder layer onto a T_{25}			
	flask at least one day before thawing the tissue PGC vial.			
	Consult the product detail of the JQ feeder cells for			
	subculture, mitotic inhibition, and plating protocols.			
	Renew the culture medium 100% just prior to thawing the vial.			
	2. Aliquot 9 mL of fresh culture medium into a 15 mL centrifugal tube.			
	-			

	3.	Retrieve the frozen vial from the liquid nitrogen storage and
		thaw the vial by gentle agitation in a water bath at 37°C.
		Although the internal-thread vial is used, keep the cap out
		of the water to prevent contamination into the cells.
		Thawing is achieved in approximately one minute, do not
		completely thaw the cells in the water bath.
	4.	Transfer the thawed content by slow dropping it into a
		centrifugal tube containing 9 mL of culture medium
		prepared in Step 2.
	5.	Centrifuge the cell suspension at 400 x g at 4°C for 5
		minutes.
	6.	Aspirate the supernatant and resuspend the cell pellet in ${\bf 1}$
		mL of complete medium. Gently break the clumps into
		smaller colonies by using a P1000 pipette.
	7.	Transfer the cell suspension into a $T_{\rm 25}$ flask containing a
		feeder layer and fresh culture medium. Distribute the cells
		evenly in the flask.
	8.	Incubate the culture at 37°C.
Maintenance	1.	Observe the appearance of spherical colonies comprising
		of large round cells with refractive granules under an
		inverted microscope. The cells exhibit several cytoplasmic
		spikes, a distinctive feature of tissue PGC (Refer to the
		Image section).
	2.	Renew half of the spent medium every two days. Carefully
		remove the spent medium without agitating the monolayer
		because the cells are only loosely attached to feeder cells,
		especially when they are freshly inoculated. Suspension of
		large colonies in the medium is frequently observed.
		Culturing in $T_{\rm 25}$ flask requires 6 mL of complete medium.
	3.	Observe the confluence that necessitates the subculture.
		Large colonies can often form in some well-proliferated
		cultures. Note: Overgrowth of colonies will result in the
		appearance of membrane blebs and cell death.

Subculture procedure	After recovery from cryopreservation, it may take one to two weeks				
	for the cells to proliferate and are ready for the subculture. The				
	subculture ratio depends on the confluency of the colonies which				
	been achieved by 1:2 or 1:3 ratio. Determine the ratio and the				
	number of feeder-covered flasks required and plating the feeder				
	cells into a new flask at least one day before the subculture. Cell				
	dissociation by gentle pipetting does not result in low viability or				
	cell death.				
	1. Collect half of the spent medium carefully by using a				
	transfer pipette and transfer the medium into a 15 mL				
	centrifugal tube. This 'conditioned medium' is to be used in				
	conjunction with the fresh medium when adding the cell				
	suspension into a new flask.				
	2. Detach the cells from the feeder layer by tapping the flask				
	or gentle pipetting. Wash off gently with 1–2 mL of culture				
	medium if some colonies remain. Avoid dislodging the				
	feeder layer along with the cells.				
	3. Collect the cell suspension into a new 15 mL centrifugal				
	tube.				
	 Centrifuge the cell suspension at 400 x g at 4°C for 5 minutes. 				
	5. Aspirate the supernatant and resuspend the cell pellet in 1				
	mL of complete medium. Gently break the clumps into				
	smaller colonies by using a P1000 pipette.				
	6. Transfer the cell suspension into a T_{25} flask covered with				
	feeder cells. Distribute the cells evenly in the flask.				
	7. Add the condition medium collected in Step 1, then add				
	the equal amount of fresh complete medium into the flask.				
	8. Incubate the culture at 37°C.				
Cryopreservation	Cryopreservation medium: 90% FBS and 10% DMSO (freshly				
	prepared).				
	1. Follow the Subculture procedure above to dissociate the cells.				

	2.	Centrifuge the cell suspension at 400 x g at 4°C for 5	
		minutes.	
	3.	Remove the supernatant and slowly resuspend the cell	
		pellet with cryopreservation medium (1mL per vial). One to	
		two vials can be achieved from one $T_{\rm 25}$ culture.	
	4.	Evenly distribute 1 mL of cell suspension into each	
		cryovial.	
	5.	Transfer the cryovials into a freezing container and store at	
		-80°C overnight, then transfer the vials to liquid nitrogen	
		storage.	
Quality controls			
Viability	\ge 50% post-thawed from cryopreservation		
Specific staining	Positive expression for CVH and DAZL		
Functional assays	Positive for in vivo gonadal migration assay		

Image

References

Chaipipat, S., Prukudom, S., Sritabtim, K., Kuwana, T., Piyasanti, Y., Sinsiri, R., Piantham, C., Sangkalerd, S., Boonsanong, S., Pitiwong, K., Pidthong, A., Wanghongsa, S., & Siripattarapravat, K. (2021). Primordial germ cells isolated from individual embryos of red junglefowl and indigenous pheasants of Thailand. *Theriogenology*, *165*, 59-68. https://doi.org/10.1016/j.theriogenology.2021.02.010

- Chaipipat, S., Sritabtim, K., Piyasanti, Y., Prukudom, S., Jurutha, J., Phetpila, V., Sinsiri, R.,
 Kammongkun, J., Molee, A., Thiangtum, K., & Siripattarapravat, K. (2023). Initiative on
 Avian Primordial Germ Cell Cryobanking in Thailand. *Biopreserv Biobank*, 21(5), 458-466. https://doi.org/10.1089/bio.2022.0043
- Sritabtim, K., Prukudom, S., Piyasanti, Y., Chaipipat, S., Kuwana, T., Jurutha, J., Sinsiri, R.,
 Tirawattanawanich, C., & Siripattarapravat, K. (2024). First study on repeatable culture of primordial germ cells from various embryonic regions with giant feeder cells in Japanese quail (Coturnix japonica). *Theriogenology*, *213*, 43-51. https://doi.org/10.1016/j.theriogenology.2023.09.020